On incidence energy of graphs
نویسندگان
چکیده
منابع مشابه
randic incidence energy of graphs
let $g$ be a simple graph with vertex set $v(g) = {v_1, v_2,ldots, v_n}$ and edge set $e(g) = {e_1, e_2,ldots , e_m}$. similar tothe randi'c matrix, here we introduce the randi'c incidence matrixof a graph $g$, denoted by $i_r(g)$, which is defined as the$ntimes m$ matrix whose $(i, j)$-entry is $(d_i)^{-frac{1}{2}}$ if$v_i$ is incident to $e_j$ and $0$ otherwise. naturally, therandi'c incidenc...
متن کاملRandić Incidence Energy of Graphs
Let G be a simple graph with vertex set V (G) = {v1, v2, . . . , vn} and edge set E(G) = {e1, e2, . . . , em}. Similar to the Randić matrix, here we introduce the Randić incidence matrix of a graph G, denoted by IR(G), which is defined as the n × m matrix whose (i, j)-entry is (di) 1 2 if vi is incident to ej and 0 otherwise. Naturally, the Randić incidence energy IRE of G is the sum of the sin...
متن کاملIncidence dominating numbers of graphs
In this paper, the concept of incidence domination number of graphs is introduced and the incidence dominating set and the incidence domination number of some particular graphs such as paths, cycles, wheels, complete graphs and stars are studied.
متن کاملOn the energy of non-commuting graphs
For given non-abelian group G, the non-commuting (NC)-graph $Gamma(G)$ is a graph with the vertex set $G$ $Z(G)$ and two distinct vertices $x, yin V(Gamma)$ are adjacent whenever $xy neq yx$. The aim of this paper is to compute the spectra of some well-known NC-graphs.
متن کاملOn net-Laplacian Energy of Signed Graphs
A signed graph is a graph where the edges are assigned either positive ornegative signs. Net degree of a signed graph is the dierence between the number ofpositive and negative edges incident with a vertex. It is said to be net-regular if all itsvertices have the same net-degree. Laplacian energy of a signed graph is defined asε(L(Σ)) =|γ_1-(2m)/n|+...+|γ_n-(2m)/n| where γ_1,...,γ_n are the ei...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 2014
ISSN: 0024-3795
DOI: 10.1016/j.laa.2013.12.026